Monatshefte für Chemie Chemical Monthly Printed in Austria

Synthesis and Stereostructure of Saturated Isoindolone-Fused Hetero Tri-, Tetra-, and Pentacyclic Compounds

Pál Sohár^{1,2,*}, Antal Csámpai¹, Gábor Magyarfalvi¹, Angela E. Szabó³, and Géza Stájer³

¹ Department of General and Inorganic Chemistry, Loránd Eötvös University, H-1518 Budapest, Hungary

² Research Group for Structural Chemistry and Spectroscopy, Hungarian Academy of Sciences – Loránd Eötvös University, H-1518 Budapest, Hungary

³ Institute of Pharmaceutical Chemistry, University of Szeged, H-6701 Szeged, Hungary

Received January 12, 2004; accepted February 12, 2004 Published online November 12, 2004 © Springer-Verlag 2004

Summary. *t*-2-Benzoyl-*t*-4-phenylcyclohexane-*r*-1-carboxylic acid reacts with hydrazine to give the saturated 1,7-diphenyl-*trans*-phthalazin-4(3*H*)-one. The reaction of the acid with ethylenediamine yields diastereomeric *trans*-imidazo[2,3-*a*]isoindoles, which differ in their C-1 configuration. The cyclizations of the acid with *cis*-2-aminocyclohexane- or 4-cyclohexenemethanol result in *trans*-iso-indolo[2,1-*a*][3,1]benzoxazines, while in its reactions with the analogous di-*endo*- and di-*exo*-norbornane- and -norborneneamino alcohols, the acid gives methylene-bridged isomeric di-*endo*-norbornanes or a norbornene derivative; the corresponding diastereomeric di-*exo* derivatives have also been prepared. After isolation, the structures were established by means of ¹H and ¹³C NMR spectroscopy, with application of DIFFN*O*E, DEPT, HMQC, HMBC, and 2D-COSY techniques.

Keywords. Isoindolones; Diastereomers; Methanobenzoxazinones; NMR; DIFFNOE.

Introduction

Both literature data [1-3] and our own results [4-6] indicate that the AlCl₃-catalysed reaction of *cis*-cyclohex-4-ene-1,2-dicarboxylic anhydride with benzene results in *t*-5-phenyl-*c*-2-benzoyl-*r*-1-cyclohexanecarboxylic acid. However, the reaction of *t*-4-phenyl-*c*-1,2-cyclohexanedicarboxylic anhydride with benzene yields mainly *t*-4-phenyl-*c*-2-benzoyl-*r*-1-cyclohexanecarboxylic acid (67%), together with a minor amount (11%) of the corresponding *t*-5-phenyl derivative. On treatment with NaOH, the former underwent ready transformation to *t*-4-phenyl-*t*-2-benzoyl-*r*-1-cyclohexanecarboxylic acid **1** [4], which has now been applied

^{*} Corresponding author. E-mail: sohar@para.chem.elte.hu

to prepare fused isoindolones. This supplements our stereochemical studies on saturated derivatives containing two condensed heterorings, when stereoisomeric non-substituted and differently phenyl-substituted cyclohexane aminoacids were applied as starting synthons [6–9]. The pharmacological activity of the target compounds is likewise of interest because the aromatic analogues with related structures are used in therapy [10–12].

Results and Discussion

On boiling in toluene in the presence of a catalytic amount of *PTSA*, 4-phenyltrans-2-benzoylcyclohexane-1-carboxylic acid **1** was cyclized with hydrazine hydrate to furnish the hexahydro trans-phthalazinone **2** (Scheme). In its reaction with ethylenediamine, **1** gives a mixture of diastereomeric, trans A/B-annelated imidazo[2,3-a]isoindolones differing in C-1 configuration, **3** and **4**, which were separated by chromatography. Here, the first step may be the formation of an azomethine, followed by cyclization and intramolecular acylation to **3** and **4**. *cis-trans*-Isomerization in cyclohexane derivatives and analogous compounds [6, 9, 13] was observed a) in the presence of acids or bases, b) on heating, and c) after

Scheme

intramolecular transacylation for cyclohexane-condensed azetidinones [14]. In the thermal cyclizations of *cis*-ethoxycarbonylcyclohexylureas to cyclohexane-condensed dihydrouracils [15], and also on starting from the isomeric *t*-2-benzoyl-*t*-5-phenylcyclohexane-*r*-1-carboxylic acid [8] or isoindolones prepared from 4- and 5-phenyl 2-*cis*-aroyl-cyclohexanecarboxylic acids [5, 9], no isomerization was found. Consequently, in syntheses from either *cis*- or *trans*-aroylcy-clohexanecarboxylic acids, isomerization has to be taken into account and the stereostructures of the new derivatives must always be clarified. As concerns the compounds discussed in this paper, the *cis*, di-*endo* or di-*exo* nature of the amino alcohols applied was exclusively retained in the cyclic products [5, 6, 9].

In its reactions with *cis*-2-aminocyclohexane- and -cyclohex-4-ene-methanol, **1** yielded the saturated or partly saturated isoindolo[2,1-*a*][3,1]benzoxazinones **5** and **6**. With di-*endo*- or di-*exo*-3-aminobicyclo[2.2.1]heptane- and -hept-5-ene-2-methanols, **1** afforded the corresponding methylene-bridged derivatives **7**–**11**; the reaction with di-*endo*-3-aminonorbornane-2-methanol furnished a mixture of diastereomers **7** and **8**, which were separated by column chromatography.

Structures

The constitutions (molecular skeletons) of 2–11 were confirmed by their IR, ¹H, and ¹³C NMR spectra (Tables 1 and 2). The rather complicated stereostructures, however, need further consideration. The following points have to be clarified: (*i*) The *cis* or *trans* annelation of the condensed pyrrolidone-cyclohexane rings (the A/B annelation). (*ii*) The configuration of C-6 (the phenyl-substituted carbon in ring A). (*iii*) The *cis* or *trans* C/D annelation in 5 and 6 (the annelation of the condensed oxazine-cyclohexane rings). (*iv*) The di-*exo* or di-*endo* annelation of the 1-phenyl group, for example relative to the other phenyl or the hydrogens on the A/B annelation). (*vi*) The steric position of the bridging CH₂ in the norbornane/ene moiety relative to the skeleton (*e.g.* to the phenyl substituents or the hydrogens on the A/B annelation) in 7–11.

(*i*) A decision between *cis* or *trans* A/B annelation is possible on the basis of the multiplicity, the splitting pattern (vicinal H,H-couplings), and/or the ¹H NMR chemical shifts of H-3a and/or H-7a. For comparison of the spectroscopic data, a special numbering system is used in this part and in the Tables, *cf.* the structures of **5** and **6**, Scheme. In the event of hidden or coalesced signals, it is also possible to deduce the axial or equatorial orientation of H-3a and H-7a from the splits (multiplicity) of H-4(*ax*) and/or H-7(*ax*). For this purpose, the C-3a and C-7a ¹³C NMR chemical shifts are also utilizable [16a]. For **3**, **5**, and **7–10** the double triplet split of the H-3a signal {two large and one smaller couplings due to two diaxial and one axial–equatorial interactions [17]: 3a,4(*ax*), 3a,7a, and 3a,4(*eq*)} is certain proof of the *trans* **A**/**B** annelation and the diaxial orientation of H-3a and H-7a. The double quartet splitting pattern of the H-4(*ax*) signal in **2**, **4**, and **11** confirms the axial position of H-4a(*ax*): a large geminal 4(*ax*), 4(*eq*) and two diaxial couplings: 3a,4(*ax*) and 4(*ax*), 5(*ax*) with similar values, and a small one, the axial–equatorial interaction of 4(*ax*), 5 (*eq*).

	ν C=O band	$\begin{array}{c} \text{OCH}_2 \\ (2 \times 1 \text{H}) \end{array}$	I) ^d	H-3a <i>dt</i> (1H) ^e	H-4(<i>ax</i>) <i>dqa</i> (1H) ^g	H-6 <i>tt</i> (1H) ^h	$\begin{array}{l} \text{H-7}(ax) \\ qa \ (1\text{H})^{\text{i}} \end{array}$	H-7a <i>dt</i> (1H) ^j
2	1674	_		2.27	1.37	2.63	1.25	2.92
3	1683	3.12	3.25	2.41	1.34	2.58	0.88	2.15
4	1687	2.75	3.15	1.95	1.43	2.44	1.56	2.20
5	1706	3.54	3.99	2.28	1.45	2.30	1.59	1.62
6	1712	3.55	3.79	$\sim 2.3^{\rm r}$	$\sim 1.5^{s}$	$\sim 2.3^{\rm r}$	$\sim 1.6^{s}$	1.67
7	1687	3.62 ^r	3.65 ^r	1.72	1.43	2.59	0.78	$\sim 2.26^{s,v}$
8	1704	3.53	3.79	2.06	1.34	2.44	0.38	2.14
9	1692	3.04	3.88	1.98	1.36 ^r	2.43	0.37	2.09
10	1696	3.70	3.75	1.82	1.54 ^r	2.66	0.86	2.24
11	1712	3.60	4.20	$\sim 2.4^{\rm r}$	1.43	$\sim 2.4^{\rm r}$	$\sim \! 1.75^{s}$	$\sim \! 1.75^{s}$

Table 1. Characteristic IR frequencies^a and ¹H NMR data^b for 2–11^c

Cyclohexane/ene (ring **D**) or norbornane/ene moiety

	$CH_2 (7')^{k,l}$		H-1 ^{/m}	H-2′ ⁿ	H-3′°	H-4′°	H-5′ ⁿ	H-6′ ^p	
2	_		_	_	_	_	_	_	
3	2.94	3.87	_	_	_	_	-	-	
4	2.86	3.74	_	_	_	_	_	_	
5	_		4.34	-	1.05	0.76	-	2.03	
6	_		4.60	-	$\sim 5.3^{t}$	$\sim 5.3^{t}$	-	2.15	
7	1.32	1.38	3.94	3.32	1.48	1.80	$\sim 2.08^{t}$	1.60	
8	1.22	1.43	3.97	2.63	1.13	0.98	2.03	2.29	
9	1.34 ^r	1.39 ^r	4.25	3.34	5.66	5.47	2.59 ^s	2.63 ^s	
10	1.27	1.89	3.77	3.64	1.71	1.56	2.09	$\sim \! 1.5^r$	
11	0.61	0.99	4.08	2.80	6.38	5.95	2.32	$\sim 1.88^{t}$	

^a In KBr discs (cm⁻¹), further bands, ν NH band: ~3205, broad (2), 3278 (3), 3455 and 3315 (4), ν C– O: 1015 (5), 1026 (6), 1039 (7), 1043 (8), 1062 (9), 1081 (10), 1031 (11), $\gamma C_{Ar}H$ and $\gamma C_{Ar}C_{Ar}$ bands: 2-4 maxima between 777-698; ^b in CDCl₃ solution (in DMSO-d₆ for 2) at 500 MHz, chemical shifts in ppm ($\delta_{TMS} = 0$ ppm), coupling constants in Hz; ^c assignments were supported by HMQC, HMBC, and DIFFNOE (except for 2-4, 6, 11), for 2, 4, 7, 10, 11 also by 2D-COSY measurements; $d^{1/1}$ CH₂ bound to the amine/amide-NH, $2 \times m$ (3, 4), dd (J: 11.5 and 4.2) and t (J: 12.0) for 5 and 6^u, t (J: 11.5) and dd (J: 12.0 and 8.2) for 8 and 9, 2 × dd, J: 12.4, 3.2 and 12.4, 6.5, resp. (10), 12.2, 10.5 and 12.2, 9.2, resp. (11); ^e J: 12.3 and 2.5 (7), 11.6 and 3.4 (8), m^f (3, 5, 9, and 10), m^r (4, 6, and 11); ^f multiplet with unresolved lines; ^g J: 12.8 and 3.7 (3), 12.4 and 3.4 (7), m^{f} (2, 4, 8, 11), m^{r} (5, 6, 9, 10); ^h J: ~12 and ~3.5 (3, 4, 7–10), m^f (2), m^r (5, 6, 11); ⁱ J: ~12 (12.4 for 2, 3), m^r (5, 6, 11); ^j J: 12.4 and 2.9 (8), dt^f (4, **6**, **9**, **10**), m^{r} (**3**, **5**, **7**, **11**); ^k *AB*-type spectrum, $2 \times d(2 \times 1H)$, *J*: 10.2 (**7**, **10**), 9.5 (**8**, **11**), 8.9 (**9**); ^m *td*, *J*: 12.5, 4.4 (5), dt, J: 8.8, 5.0 (6), dd, J: 11.5, 4.1 (7), 12.0, 2.5 (8), 10.0, 3.2 (9), 9.0, 1.5 (11), d, J: 8.5 (10); $^{n} \sim s(1H)$; $^{o} H(ax), 2 \times 1H, 2 \times qa$ (5), $\sim s(2H)$ for 6, $2 \times 1H$ and $\sim 1.35 m$ (2H) for 7, $2 \times m$ $(2 \times 2H)$ for **8**, $2 \times dd$ $(2 \times 1H)$, J: 5.6, 2.8, and 5.6, 3.1 (**9**, **11**), $4 \times m$ $(4 \times 1H)$ with the two further signals at 1.20 and 1.28 (10); ${}^{p} m$ (1H); r,s,t overlapped signals; u further split of the upfield dd of 6 to a ddd/downfield d of 7 to a dd due to ⁴J-long range coupling; ^v overlapped with the H-4(eq) signal

Similarly, three large couplings (one geminal and two diaxial) result in a quartet split of H-7(ax) in 2 and 4, which prove the axial position of H-7a and thus the *trans* A/B annelation. Because of signal overlaps, it is not possible to

	Isoindole ring ^d									
	C-1	C=O(3)	C-3a	C-4	C-5	C-6	C-7	C-7a	OCH ₂ ^e	
2	156.9	170.0	39.6	26.4	33.0	43.5	37.8	38.8	_	
3	89.3	176.9	48.3	26.0	33.2	44.3	35.9	57.0	48.1	
4	88.6	182.7	49.8	26.2	34.7	45.3	33.1	47.5	46.7	
5	92.7	180.9	45.7	26.1	34.8^{f}	44.9	30.8	54.5	63.3	
6	92.9	181.4	45.9 ^g	27.1	34.8	44.9 ^g	30.8	54.7	64.2	
7	93.1	175.1	43.5	26.2	33.7	44.3	34.6	54.4	62.8	
8	94.1	179.1	43.2	26.0	33.5	44.1	34.9	56.6	62.4	
9	93.4	178.2	43.0	25.9	33.6	44.1	34.9	56.7	64.8	
10	93.3	174.8	44.1	26.1	33.7	44.3	34.4	53.8	64.9	
11	92.2	181.6	45.2 ^g	26.1	34.7	45.0 ^g	31.1	54.0	67.5	

Table 2. ¹³C NMR chemical shifts^a for 2–11^{b,c}

Cyclohexane/ene (ring D in 5 and 6) or norbornane/ene moiety

	C-1′	C-2′	C-3′	C-4′	C-5′	C-6′	CH ₂ (7')
2	_	_	_	_	_	_	_
3	42.5	-	_	_	_	_	_
4	44.2	_	_	_	_	_	-
5	53.3	27.7	26.0	21.4	27.9	34.8^{f}	-
6	50.1	26.0	123.9 ^h	124.7 ^h	25.5	32.9	_
7	51.3	41.6	22.4	22.8	42.8	33.1	36.9
8	54.5	42.0	22.2	24.0	38.5	32.8	38.0
9	52.5	47.9	137.5	136.2	43.9	35.6	48.6
10	57.4	39.6	25.9	30.4	44.7	39.5	34.7
11	54.2	47.8	139.6	135.4	45.1 ^{f,g}	29.0	45.1 ^f

Further signals, 1-phenyl, C-1: 137.3 (2, 9), 138.8 (3), 142.0 (4, 6), 141.7 (5, 11), 136.4 (7, 10), 137.7 (8); C-2,6:ⁱ 127.0 \pm 1.2, broadened signal for 7 and 10; C-3,5:ⁱ 127.7 \pm 0.7; C-4: 127.4 (8), 128.7 \pm 0.5; 6-phenyl, C-1: 147.2 (2), 146.1 (4), 146.4 \pm 0.1; C-2,6: 127.6 (2), 127.3 \pm 0.1; C-3,5: 129.2 (2), 128.8 \pm 0.1; C-4: 127.0 (2), 126.7 \pm 0.1

^a In ppm (δ_{TMS} = 0 ppm) at 125.7 MHz, solvent: CDCl₃ (for **2** *DMSO*-d₆); ^b assignments were supported by DEPT, HMQC, and HMBC measurements; ^c for numbering see Scheme; ^d for **2** phthalazine ring; ^e CH₂ bound to the amine-NH in **3** and **4**; ^f two overlapping lines; ^{g,h} interchange-able assignments; ⁱ two separated lines for **5**, **6**, **8**, **9**, and **11**

draw an analogous conclusion for **11**. However, the practically unaltered C-3a and C-7a shifts for **10** and **11** (44.1 and 53.8 ppm for **10**, and \sim 45.2 and 54.0 ppm for **11**) indicate the same stereostructure in the analogous part of these molecules.

(*ii*) For **3**, **4**, and **7–10** the equatorial position (*cis* to H-3a and *trans* to H-7a) of the 6-phenyl group follows from the triple triplet split of the H-6 signal (two large diaxial and two smaller axial–equatorial vicinal couplings, *i.e.* the axial orientation of H-6). For **2**, **5**, **6**, and **11** the similar C-6 chemical shifts demonstrate the analogous steric position of the 6-phenyl group: these shifts are within a 1 ppm interval for compounds **3–11** (44.8 \pm 0.5 ppm).

- (*iii*) For the NCH group the triple doublet split (only one diaxial interaction) in the ¹H NMR signal confirms the *cis* C/D annelation in **5**. For the more flexible **6** (due to the flattened cyclohexene ring **D**), however, the splits are smaller, and hence are not convincing as concerns the annelation. For **5** the shifts of the annelational carbons, however, are smaller (by 3.2 and 1.9 ppm) and a *cis* \rightarrow *trans* change in the C/D annelation should lead to an opposite difference [16a]. Consequently, the C/D annelation must be unaltered *cis* for **6**.
- (*iv*) By application of our "splitting rule" [18, 19], the starting di-*endo* (7–9) or di-*exo* (10, 11) annelation of the reacting bicyclic partners (*E*-*H*, Scheme) remain the same in the pentacyclic products. The 1',6'-vicinal coupling leads to a doublet split of the corresponding H-1' and H-6' signals by \sim 8–9 Hz. For the di-*endo* compounds, the H-1',2' and H-5',6' couplings result in further splits of these signals to double doublets (due to a dihedral angle of \sim 30°), whereas in the di-*exo* analogues, these couplings are small (the dihedral angle is about 90°), which causes no further split.
- (v) The steric orientation of the 1-phenyl group follows from the anisotropic shielding caused by the benzene ring on the close-lying hydrogens; the ¹H NMR signals are shifted upfield by this effect [16b]. When the 1-phenyl ring is in the *exo* position (on the same side of the skeleton as H-3a), its anisotropy results in a dramatic upfield shift of the H-7(*ax*) and H-3a signals, as observed for **3** and **7–10** (the H-7(*ax*) shifts are <1 ppm, whereas they are 1.25–1.75 ppm for the other compounds). The close arrangement of the 1-phenyl group and the 3a and 7(*ax*) hydrogens was confirmed by DIFFN*O*E measurements. On irradiation of one of the signals of the *ortho*-hydrogens of the 1-phenyl groups or H-3a or H-7(*ax*), the other displayed an intensity enhancement.
- (vi) For 7 the DIFFNOE results demonstrate the close arrangement of the H-1', H-6' on the norbornane moiety (to the oxazine ring) and the 1-phenyl group. As regards the di-*endo* annelation, it has been proved that the latter group and the bridging CH₂ are on the same side of the skeleton. Since all the other parts of molecule **8** have the same steric structure as in 7, the bridging CH₂ must be in an opposite position in **8**, *i.e.* the CH₂ lies on the opposite side of the skeleton from the 1-phenyl group. Accordingly, the two neighbouring methylene groups (in Pos. 3' and 4', Q in **8**) are close to the 1-phenyl group, and the anisotropy of the latter results in an upfield shift of the signals of these methylene hydrogens (0.98 and 1.13 ppm for **8**, and ~1.35, 1.48, and 1.80 ppm for **7**).

Though norbornene 9 has no isomeric counterpart, the upfield shifts of H-3' and H-4' (olefinic hydrogens in the norbornene moiety) relative to those in 11 (5.66 and 5.47 ppm in 9, and 6.38 and 5.95 ppm in 11) suggest the opposite position of the 1-phenyl and the bridging CH_2 in 9, similarly as in 8.

Thus, it is easy to see that for **11** the relative position of the two groups in question is opposite to that in **8** and **9**: the bridging CH_2 and 1-phenyl group are on the same side of the skeleton, similarly as in **7**. Because of the di*-exo* annelation, however, the two groups are situated close to one another and the anisotropic effect of the benzene ring leads to an upfield shift of the hydrogens of the bridging CH_2 (0.61 and 0.99 ppm, whereas the corresponding values in **9** are 1.34 and 1.39 ppm).

DIFFNOE between the *ortho*-hydrogens (1-phenyl) and H-1' (NCH group) and the lack of anisotropic shielding on the bridging CH_2 suggest a stereostructure with these two groups on opposite sides of the skeleton for **10**, analogously as in **8** and **9**.

From the above, it can be concluded that the *endo* position of the 1-phenyl group in **4**–**6** and **11** is reflected in a downfield shift of the 3-carbonyl signal (these shifts are >180 ppm, whereas they are <180 ppm for the other compounds). The configurations in **1** remain unaltered in all products: *trans* \rightarrow *cis* isomerization was not observed with these compounds. Similarly, the original stereostructures are retained in the products. The isomeric pair **3** and **4** differ in the position of the 1-phenyl, while **7** and **8** differ in the positions of the 1-phenyl and the bridging CH₂ of the norbornane moiety. For **8**, the steric hindrance between the 1-phenyl and the neighbouring methylene hydrogens (Pos. 3' and 4'), leads to formation of the isomeric **7**, whereas **9**, in which the steric hindrance is only moderate, did not undergo isomerization. The steric structure of **10** can be explained analogously (in this structure, the molecule avoids an unfavourable interaction of the 1-phenyl group with the bridging CH₂).

Experimental

IR spectra were run in KBr discs on a Bruker IFS-55 FT-spectrometer controlled by Opus 3.0 software. The ¹H and ¹³C NMR spectra were recorded in CDCl₃ solution in 5 mm tubes at rt on a Bruker DRX-500 spectrometer at 500.13 (¹H) and 125.76 (¹³C) MHz with the deuterium signal of the solvent as the lock and *TMS* as internal standard. The VT-NMR measurements were carried out in *DMSO*-d₆ from 298 K to 353 K on BRUKER AM 300 equipment. The standard Bruker microprogram NOEMULT to generate NOE [20] and DIFFNOE spectra [16c, 21] was used with a selective pre-irradiation time. DEPT spectra [22] were run in a standard manner [23], using only a $\Theta = 135^{\circ}$ pulse to separate the CH/CH₃ and CH₂ lines phased "up" and "down", respectively. The 2D-COSY [24a, 25a], HMQC [24b, 25b], and HMBC [26, 27] spectra were obtained by using the standard Bruker pulse programs COSY-45, INV4GSSW, and INV4GSLRNDSW, respectively.

General Procedure for the Preparation of 2-11

A mixture of 3.08 g of 1 (0.01 mol), aminoalcohol (0.6 g ethylenediamine, 1.3 g *cis*-2-aminocyclohexanemethanol, or -cyclohex-4-enemethanol, 1.4 g di-*endo*- or di-*exo*-3-aminobicyclo[2.2.1]heptane-, or -hept-5-enemethanol, 0.01 mol) and 0.05 g of *PTSA* in dry toluene (for 2 and 5–9) or chlorobenzene (for 3, 4, 10, and 11) was refluxed for 2 h with the application of a water separator. After the solvent had been evaporated, the residue was transferred to an aluminum oxide (Acros basic, 50–200 μ , for 2, 6, and 9–11) or silica gel (Silica gel Merck 60, 0.040–0.063 mm, for 3–5, 7, and 8) column and eluted with benzene (for 5), *EtOAc* (for 2, 9, and 11) or *n*-hexane:*EtOAc* = 2:1 (for 3 and 4) or *n*hexane:*EtOAc* = 4:1 (for 6–8 and 10), with monitoring by TLC (silica gel TLC aluminum sheets, solvent: benzene:*Et*OH:petroleum ether (bp 40–60°C) = 4:1:3, development in iodine vapour; higher *R*_f 4 and 7, lower *R*_f 3 and 8).

1,7-Diphenyl-4a,5,6,7,8,8a-hexahydrophthalazin-4(3H)-one (2, C₂₀H₂₀N₂O)

Yield 2.19 g (72%); mp 235–236°C (*Et*OH).

8,9b-Diphenylperhydroimidazo[2,3-a]isoindolone (3, C₂₂H₂₄N₂O)

Yield 0.86 g (26%); mp 237-239°C (EtOH).

P. Sohár et al.

8,9b-Diphenylperhydroimidazo[2,3-a]isoindolone (**4**, C₂₂H₂₄N₂O) Yield 0.93 g (28%); mp 248–250°C (*Et*OH).

6*a*,8-*Diphenyl-11-oxoperhydroisoindolo*[2,1-*a*][3,1]*benzoxazine* (**5**, C₂₇H₃₁NO₂) Yield 2.65 g (66%); mp 263–265°C (*Et*OH).

6a,8-Diphenyl-11-oxo-1,4,4a,6b,7,8,9,10,10a,12a-decahydroisoindolo[2,1-a][3,1]benzoxazine (**6**, C₂₇H₂₉NO₂)

Yield 2.32 g (58%); mp 226-228°C (EtOH).

di-endo-6a,8-Diphenyl-1,4-methano-11-oxoperhydroisoindolo[2,1-a][3,1]benzoxazine (7, C₂₈H₃₁NO₂)

Yield 1.32 g (32%); mp 195-197°C (EtOH).

di-endo-6a,8-*Diphenyl-1*,4-*methano-11-oxoperhydroisoindolo*[2,1-*a*][3,1]*benzoxazine* (**8**, C₂₈H₃₁NO₂)

Yield 1.24 g (30%); mp 193–195°C (*Et*OH).

di-endo-6a,8-*Diphenyl-1*,4-*methano-11-oxo-1*,4,4*a*,6*b*,7,8,9,10,10*a*,12*a*-*decahydroisoindolo*[2,1-*a*][3,1]*benzoxazine* (**9**, C₂₈H₂₉NO₂)

Yield 3.13 g (76%); mp 280–281°C (*Et*OH).

 $\label{eq:constraint} \begin{array}{l} \textit{di-exo-6a,8-Diphenyl-1,4-methano-11-oxoperhydroisoindo-lo[2,1-a][3,1]benzoxazine~(10,~C_{28}H_{31}NO_2) \end{array}$

Yield 3.30 g (80%); mp 197–199°C (*EtOAc*).

di-exo-6a,8-*Diphenyl-1*,4-*methano-11-oxo-1*,4,4*a*,6*b*,7,8,9,10,10*a*,12*a*-*decahydroisoindolo*[2,1-*a*][3,1]*benzoxazine* (**11**, C₂₈H₂₉NO₂)

Yield 2.88 g (70%); mp 250-252°C (EtOH).

Acknowledgements

The authors are indebted to Mrs. *E. Csiszár-Makra* for typing of the manuscript. We are grateful for financial support from the Hungarian Research Foundation (grants OTKA 29651 and 37204) and the Ministry of Education (grant FKFP-0200/2000).

References

- [1] Schefczik E (1965) Chem Ber 98: 1270
- [2] Sugita K, Tamura S (1971) Bull Chem Soc Jpn 44: 3388
- [3] Sugita K, Tamura S (1971) Bull Chem Soc Jpn 44: 2866

1526

Saturated Isoindolone-Fused Heterocycles

- [4] Klika KD, Tähtinen P, Dahlqvist M, Szabó JA, Stájer G, Sinkkonen J, Pihlaja K (2000) J Chem Soc Perkin 2, 687
- [5] Stájer G, Szabó AE, Bernáth G, Sohár P (1994) Heterocycles 38: 1061
- [6] Stájer G, Csende F, Bernáth G, Sohár P (1994) Heterocycles 37: 883
- [7] Sohár P, Stájer G, Nagy K, Bernáth G (1995) Magn Reson Chem 33: 329
- [8] Stájer G, Szabó AE, Csende F, Argay G, Sohár P (2002) J Chem Soc Perkin 2, 657
- [9] Sohár P, Stájer G, Szabó AE, Bernáth G (1996) J Mol Struct 382: 187
- [10] Curran V, Ross A (1974) J Med Chem 17: 273
- [11] Houlihan WJ (1976) US Pat 3 391 176; (1976) Chem Abstr 84: 105630t
- [12] Mertens A, Zilch H, König B, Schäfer W, Poll T, Kampe W, Seidel H, Leser U, Leinert H (1993)
 J Med Chem 36: 2526
- [13] Pojarlieff IG, Mitova-Chernaeva RZ, Blagoeva J, Kurtev BJ (1968) C R Acad Bulg Sci 21: 131;
 (1968) Chem Abstr 69: 51283
- [14] Stájer G, Szöke-Molnár Z, Bernáth G, Sohár P (1990) Tetrahedron 46: 1943
- [15] Frimpong-Manso S, Nagy K, Stájer G, Bernáth G, Sohár P (1992) J Heterocycl Chem 29: 221
- [16] Sohár P (1983) Nuclear Magnetic Resonance Spectroscopy. CRC Press, Boca Raton, Florida: a) vol 2, p 165; b) vol 1, pp 35–38; c) vol 1, pp 194–196
- [17] Karplus M (1959) J Chem Phys 30: 11; (1960) 33: 1842
- [18] Sohár P, Stájer G, Bernáth G (1983) Org Magn Reson 21: 512
- [19] Sohár P, Pelczer I, Stájer G, Bernáth G (1987) Magn Reson Chem 25: 584
- [20] Noggle JH, Schirmer RE (1971) The Nuclear Overhauser Effect. Academic Press, New York
- [21] Sanders JKM, Mersch DJ (1982) Prog Nucl Magn Reson 15: 353
- [22] Pegg DT, Doddrell DM, Bendall MR (1982) J Chem Phys 77: 2745
- [23] Bendall MR, Doddrell DM, Pegg DT, Hull WE (1982) High Resolution Multipulse NMR Spectrum Editing and DEPT. Bruker, Karlsruhe
- [24] Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford, UK: a) pp 400–448; b) pp 471–479
- [25] Sanders JKM, Hunter BK (1987) Modern NMR Spectroscopy. A Guide for Chemists. University Press, Oxford, UK: a) pp 108–113; b) pp 94–97; pp 100–107
- [26] Bax A, Morris G (1981) J Magn Reson 42: 501
- [27] Kessler H, Griesinger C, Zarboch J, Loosli H (1984) J Magn Reson 57: 331